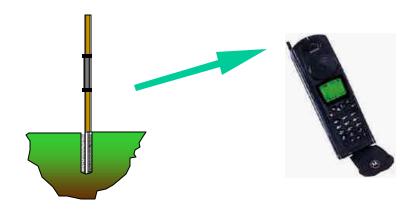


Antenna Applications of Meta Materials

Dr. Paul Kolodzy
DARPA/ATO
September 2000

DARPA Real-Time Mobile Ad Hoc Networks



- Technology
 - •Merging Real-Time and Non-Real Time on single mobile wireless network
 - Combination of ad-hoc and mobile backbone communication service
 - Topology control and predictive routing for mobile LOS backbones
 - Optimization of LOS and non-LOS links on multiple spatial sides
 - •Tactical picture-based bandwidth allocation for real-time traffic
 - •Modeling and simulation with realistic fidelity and scale

What Are We Trying to Do?

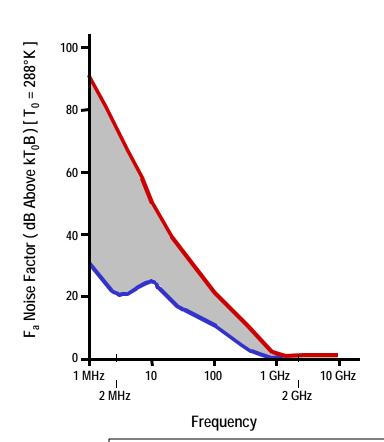
Physically Small, Electrically Large Antennas (I / 10 I / 100)

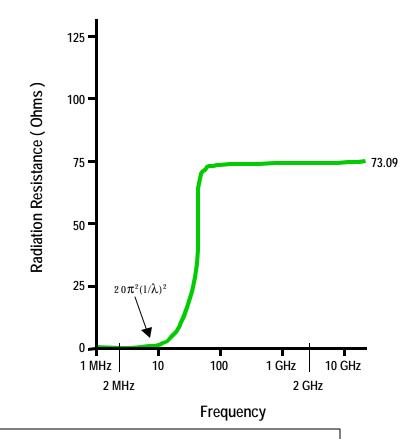
- Fewer Constraints for Wireless Communications
- Compact DF for Geolocation
- Integrated RF Filtering

Low Profile, High Performance Integrated RF Front End

- Integrate Antenna with Front End
- Complement / Extend Software Radios
- Cover 2 MHz To 2 GHz Bands

ATO Antenna Needs


- ATO addressing broadband communications for mobile users
 - Programs such as ACN, SUO, FCS
 - Need is for flexible wideband RF links
- Antennas needed:
 - Must match receiver designs such as Ultracom
 - Cover the frequency range of 20 MHz to 2.5 GHz
 - Have 100s of MHz of instantaneous bandwidth for receiving
 - Have over 20 MHz bandwidth with good efficiency for transmitting


Antenna Requirement for Communications Band

Antenna Noise Factor vs. Frequency [Lossless Antenna]

Radiation Resistance vs. Frequency for Dipole with 2 Meter Maximum Dimension

What Has Changed?

Developments in Materials

- Meta Materials
- Artificial Dielectrics and Magneto-dielectrics
- Nanotubes ($\varepsilon_r \rightarrow 100,000+$)

Developments in Antennas and Electromagnetic Theory

- Material Loading Concepts (Dipoles, Patches, Stripline Arrays)
- All Dielectric Antenna Concepts (Dielectric Resonators, Dielectric Waveguides)
- Numerical Electromagnetics (Material Modeling, Finite Elements, Finite Difference Time Domain, Method of Moments, Faster Computers)

Material Property Possibilities

Material Property Possibilities

• "...It may be expected that magneto-dielectric materials, if low loss, would be useful in some types of antennas...there is little improvement to be realized in the arrangement of the wires in the antenna; a significant improvement will come from the use of new materials."

- R.C.Hansen, IEEE Fellow, 18 Sep 98

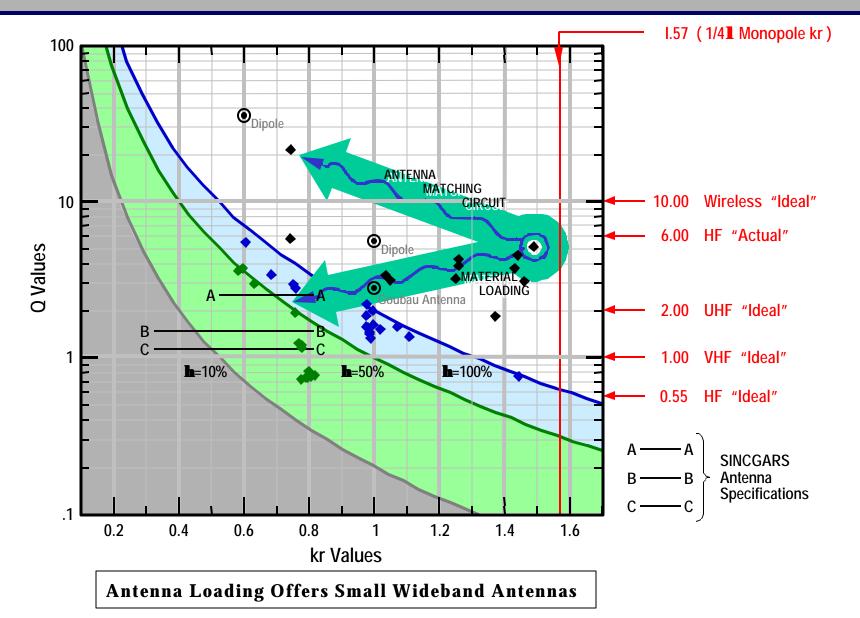
- R.C Hansen's example: A patch antenna with a substrate having $\mu > 1$ and $\epsilon \cong 1$ can have either :
 - (1) a significant increase in bandwidth or
 - (2) the patch can be made significantly smaller with the same bandwidth

Material Property Possibilities

- Materials with negative constitutive parameters
 - Small antenna limitations arise from reactive fields (energy storage) in the region surrounding the antenna
 - Can materials with μ or ϵ be used to reduce the reactive fields surrounding a small antenna (reducing energy storage) while not affecting or enhancing the radiation fields?

What Do New Materials Enable?

Chu Harrington Limitations for Small Antennas



- Relates lowest achievable Q to the maximum dimension of an electrically small antenna, and the result is independent of how the antenna within the sphere is constructed
- Implies improving bandwidth for an electrically small antenna is only possible by fully utilizing the volume or by reducing efficiency
- Based on equivalent circuit for antenna derived from spherical harmonic/Bessel function expansion of solution to Maxwell's equations

Chu Harrington Plot for Small Antenna Results

Other Approaches

Electronically Scanned Array Antennas

- Patch Elements
- Wideband Elements
- T / R Units

Wire Antennas

- Dipole Elements in Arrays
- Spiral Elements and Arrays
- Log Periodic Arrays

Materials add additional degrees of design freedom to both ESA and Wire antennas

Why Is It Hard?

New Electromagnetic Materials

- Existing High ε Materials Too Heavy ($\sim 5-6$ grams / cm³ vs . Potential ~ 1 gm / cm³)
- Existing High μ Materials too Lossy
- Limited Bandwidth for Negative Constituent Parameter Ranges
- Must Ensure Sufficiently Large Breakdown Voltages (> 100 KV / cm)
- Must Ensure Proper Material Properties in Useful Temperature Range
- New Techniques for Fabrication of Materials

New Antenna Concepts

- Radiation Without Wires (Direct Radiation from Dielectric)
- Overcome Material Impedance Mismatch for Antennas (Wide-Band, Geometrically Small)
- Integration of Antenna and RF Stages

Technical Risks

Material Exploitation

- Fabrication yield too low (Goal: yield comparable to I.C.s)
- Temperature effects on properties (Goal: Curie Temperatures > 100 C)
- Anisotropy or inhomogeneity in constituent parameters (Goal: exploit in designs)
- Weight of material too high (Goal: specific gravity ~ 1)

Antennas

- RF coupling problems (Goal: > 90% of energy coupled near Brewster Angle)
- VSWR, bandwidth, sensitivity, gain, loss (Goal: better than wire antennas)
- Noise physics, breakdown voltages (Goal: Breakdown voltage > 100 KV/cm, system noise temperature ~ 300 K)
- Size, weight, other mechanical properties (Goal: comparable to plastics)